Bộ đề thi tuyển sinh vào Lớp 10 THPT môn Toán - Năm học 2019-2020 (Có đáp án)

2. Bài toán có nội dung thực tế
Cho một thửa ruộng hình chữ nhật, biết rằng nếu chiều rộng tăng thêm 2m chiều dài giảm đi 2m thì diện tích thửa ruộng đó tăng thêm 30 và nếu chiều rộng giảm đi 2m chiều dài tăng thêm 5m thì diện tích thửa ruộng giảm đi 20m Tính diện tích thửa ruộng trên.
docx 54 trang Mạnh Hoàng 04/03/2024 420
Bạn đang xem 20 trang mẫu của tài liệu "Bộ đề thi tuyển sinh vào Lớp 10 THPT môn Toán - Năm học 2019-2020 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docxbo_de_thi_tuyen_sinh_vao_lop_10_thpt_mon_toan_nam_hoc_2019_2.docx

Nội dung text: Bộ đề thi tuyển sinh vào Lớp 10 THPT môn Toán - Năm học 2019-2020 (Có đáp án)

  1. SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT HẢI PHÒNG Năm học 2019 – 2020 ĐỀ CHÍNH THỨC ĐỀ THI MÔN TOÁN Thời gian làm bài: 120 phút (không kể thời gian giao đề). Chú ý: Đề thi gồm 02 trang. Thí sinh làm bài vào tờ giấy thi. Bài 1. (1,5 điểm) Cho hai biểu thức: A 20 45 3 5 : 5; x 2 x x 9 B (với x 0 ). x x 3 a) Rút gọn các biểu thức A, B. b) Tìm các giá trị của x sao cho giá trị biểu thức B bằng giá trị biểu thức A. Bài 2. (1,5 điểm) a) Tìm các giá trị của tham số m để đồ thị hai hàm số y m 4 x 11 và y x m2 2 cắt nhau tại một điểm trên trục tung. 2 1 3x y 1 2 b) Giải hệ phương trình  1 2x 2 y 1 Bài 3. (2,5 điểm) 1. Cho phương trình x2 2mx 4m 4 0 1 ( x là ẩn số, m là tham số). a) Giải phương trình 1 khi m 1. b) Xác định các giá trị của m để phương trình 1 có hai nghiệm phân biệt x1, x2 2 thỏa mãn điều kiện x1 x1 x2 x2 12. 2. Bài toán có nội dung thực tế Cho một thửa ruộng hình chữ nhật, biết rằng nếu chiều rộng tăng thêm 2m, chiều dài 2 giảm đi 2m thì diện tích thửa ruộng đó tăng thêm 30m ; và nếu chiều rộng giảm đi 2m, chiều dài tăng thêm 5m thì diện tích thửa ruộng giảm đi 20m2. Tính diện tích thửa ruộng trên. Bài 4. (3,5 điểm) 1. Từ điểm A nằm ngoài đường tròn O vẽ hai tiếp tuyến AD, AE ( D, E là các tiếp điểm). Vẽ cát tuyến ABC của đường tròn O sao cho điểm B nằm giữa hai điểm A và C; tia AC nằm giữa hai tia AD và AO. Từ điểm O kẻ OI  AC tại I. a) Chứng minh năm điểm A, D, I, O, E cùng nằm trên một đường tròn. b) Chứng minh IA là tia phân giác của D· IE và AB.AC AD2. c) Gọi K và F lần lượt là giao điểm của ED với AC và OI. Qua điểm D vẽ đường thẳng song song với IE cắt OF và AC lần lượt tại H và P. Chứng minh D là trung điểm của HP. 2 2. Một hình trụ có diện tích xung quanh 140 (cm ) và chiều cao là h 7(cm). Tính thể tích của hình trụ đó. 1
  2. m 3 2 0,25 m 9 m 3 m 3 m 3 0,25 Vậy m 3 thì hai đồ thị hàm số trên cắt nhau tại một điểm trên trục tung. 2 1 3x y 1 2 b) (0,75 điểm) Giải hệ phương trình 1 2x 2 y 1 2 1 3x y 1 2 Điều kiện y 1 hệ phương trình có dạng 0,25 2 4x 4 y 1 9 9 7x x 2 14 0,25 1 1 2x 2 2 2x y 1 y 1 9 9 9 9 x x x x 14 14 14 14 1 9 1 5 7 2 2 2. y 1 y ( tm ) y 1 14 y 1 7 5 5 0,25 9 x 14 Vậy hệ phương trình đã cho có nghiệm: . 2 y 5 3.1 a) (0,5 điểm) Giải phương trình x2 2x 4m 4 0 1 khi m 1. Với m 1 phương trình (1) có dạng: x2 2x 0 0,25 Phương trình có hai nghiệm phân biệt: x1 0; x2 2 . 0,25 Vậy khi m 1 thì phương trình (1) có hai nghiệm x1 0; x2 2 Bài 3 3.1 b) (1,0 điểm) Tìm các giá trị của m để phương trình (1) có hai nghiệm phâ (2,5 điểm) 2 biệt x1;x2 thỏa mãn x1 x1 x2 x2 12. Tính ' m2 4m 4 m 2 2 Để phương trình (1) có hai nghiệm phân biệt thì 0,25 ' 0 m 2 2 0 m 2. 3
  3. vẽ đường thẳng song song với IE cắt OF và AC lần lượt tai H và P. Chứng minh D là trung điểm của HP. E O K C I P B A D H F 4.1 a (0,75 điểm) Chứng minh năm điểm A,D,I ,O,E cùng thuộc một đường tròn; + Chứng minh 4 điểm A,D,O,E thuộc một đường tròn (1) 0,25 + + Chứng minh 4 điểm A,D,O,I thuộc một đường tròn (2) 0,25 Từ (1) và (2) suy ra năm điểm A,D,I ,O,E cùng thuộc một đường 0,25 4.1 b (1,0 điểm) Chứng minh IA là tia phân giác của D· IE và AB.AC AD2; Chứng minh được tứ giác AEID nội tiếp E· IA D· IA (3) 0,25 Chứng minh được tứ AE AD »AE »AD (4) 0,25 Từ (3) và (4) suy ra IA là tia phân giác của D· IE Chứng minh ABD  ADC 0,25 AD AB Suy ra AD2 AB.AC (đpcm) 0,25 AC AD 4.1 c (0,75 đi 5
  4. 3 9A . a b c 9 A 1. 2 0,25 Dấu “=” xảy ra khi a b c 2 Vậy MaxA 1 a b c 2. * Chú ý: Trên đây chỉ là Đáp án dự kiến- chưa phải đáp án chính thức. Họ và tên thí sinh: Số báo danh: Cán bộ coi thi 1: Cán bộ coi thi 2: SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT, THPT CHUYÊN TỈNH HẬU GIANG NĂM HỌC: 2019 - 2020 MÔN THI : TOÁN - THPT ĐỀ CHÍNH Thời gian : 120 phút (không tính thời gian giao đề) THỨC PHẦN I: TRẮC NGHIỆM (3,0 điểm) Câu 1: Điều kiện để hàm số y m 3 x 3 đồng biến trên R là: A. m 3 B. m 3 C. m 3 D. x 3 Câu 2: Cho hàm số y 3x2 kết luận nào sau đây đúng. A. y 0 là giá trị lớn nhất của hàm số B. y 0 là giá trị nhỏ nhất của hàm số C. Không xác định được giá trị lớn nhất của hàm số trên. D. Xác định được giá trị nhỏ nhất của hàm số trên. 2019 Câu 3: Điều kiện xác định của biểu thức 2019 là: x A. x 0 B. x 1 C. x 1 hoặc x 0 D. 0 x 1 Câu 4: Cho phương trình x 2y 2 1 , phương trình nào trong các phương trình sau đây kết hợp với (1) để được phương trình vô số nghiệm. 1 1 A. 2x 3y 3 B. 2x 4y 4 C. x y 1 D. x y 1 2 2 2 Câu 5: Biểu thức 5 3 5 có kết quả là: A. 3 2 5 B. 3 2 5 C. 2 3 5 D. -3 Câu 6: Cho hai phương trình x2 2x a 0 và x2 x 2a 0 . Để hai phương trình cùng vô nghiệm thì: 7
  5. 1 b) Tìm m để đường thẳng (d): y m 1 x m2 m đi qua điểm M 1; 1 2 c) Chứng minh rằng parabol (P) luôn cắt đường thẳng d tịa hai điểm phân biệt A và B. 2 2 Gọi x1;x2 là hoàng độ hai điểm A, B. Tìm m sao cho x1 x2 6x1x2 2019 Bài 4. (2,5 điểm) Cho đường tròn tâm (O) với đáy AB cố định không phải đường kính. Gọi C là điểm thuộc cung lớn AB sao cho tam giác ABC nhọn. M, N lần lượt là điểm chính giữa của cung nhỏ AB; AC . Gọi I là giao điểm của BN và CM. Dây MN cắt AB và AC lần lượt tại H và K. a) Chứng minh tứ giác BMHI nội tiếp. b) Chứng minh MK.MN MI.MC c) chứng minh tam giác AKI cân tại K. x2 3x 2019 Bài 5: Với x 0 , tìm giá trị nhỏ nhất của biểu thức: A x2 HẾT Họ và tên thí sinh: SBD: Phòng thi số: HƯỚNG DẪN GIẢI PHẦN I: TRẮC NGHIỆM 1.B 2.A 3.C 4.C 5.B 6.A 7.A 8.D 9.C 10.C 11.D 12.B PHẦN II: TỰ LUẬN 4 8 2 3 6 4 2 2 2 3 2 3 Bài 1: A 2 2 3 2 2 3 4 3 2 3 2 3 2 2 3 2 2 2 2. 3 2 2 3 2 2 3 2 2 3 2 2 2 3 2 2 3 1 2 1 2 2 2 3 2 2 3 Vậy A 1 2 Bài 2: a) 5x2 13x2 6 0 Ta có 132 4.5.6 289 0 17 13 17 2 x 1 2.5 5 phương trình có hai nghiệm phân biệt 13 17 x 3 2 2.5 9
  6. x1 x2 2 m 1 Theo vi-ét ta có: 2 x1.x2 m 2m 2 2 Theo đề ta có: x1 x2 6x1x2 2019 2 x1 x2 4x1x2 2019 0 2 2 2 m 1 4 m 2m 2019 0 4m2 8m 4 4m2 8m 2019 0 16m 2015 0 16m 2015 2015 m 16 Bài 4: a) Ta có: A· BN N· MC (hai góc nội tiếp cùng chắn cung hai cung bằng nhau) H· BI H· MI Tứ giác BMHI nội tiếp ( tứ giác có hai đỉnh kề cùng nhìn 1 cạnh dưới các góc bằng nhau). b) Ta có M· NB A· CM (hai góc nội tiếp cùng chắn cung hai cung bằng nhau) M· NI M· CK Xét tam giác MIN và tam giác MKC ta có: N· MC : chung M· NI M· CK cmt MI MK MIN MKC g g MK.MN MI.MC MN MC c) Ta có M· NI M· CK (cmt) nên tứ giác NCIK nội tiếp H· KI N· CI N· CM ( góc ngoài và góc trong tại đỉnh đối diện của tứ giác nội tiếp) 11
  7. Câu 1. (2,0 điểm) 1 Cho parabol (P) : y x 2 và đường thẳng (d) : y x 4. 2 a. Vẽ (P) và (d) trên cùng hệ trục tọa độ. b. Tìm tọa độ giao điểm của (P) và (d) bằng phép tính. Câu 2. (1,0 điểm) 2 Cho phương trình: 2x 3x 1 0 có hai nghiệm x1, x2 . Không giải phương trình, hãy tính giá trị x 1 x 1 của biểu thức: A 1 2 . x2 1 x1 1 Câu 3. (0,75điểm) Quy tắc sau đây cho ta biết được ngày thứ n , tháng t , năm 2019 là ngày thứ mấy trong tuần. Đầu tiên, ta tính giá trị của biểu thức T n H , ở đây H được xác định bởi bảng sau: Tháng t 8 2; 3; 11 6 9; 12 4; 7 1; 10 5 H 3 2 1 0 1 2 3 Sau đó, lấy T chia cho 7 ta được số dưr (0 r 6) . Nếu r 0 thì ngày đó là ngày thứ Bảy. Nếu r 1 thì ngày đó là ngày Chủ Nhật. Nếu r 2 thì ngày đó là ngày thứ Hai. Nếu r 3 thì ngày đó là ngày thứ Ba. Nếu r 6 thì ngày đó là ngày thứ Sáu. Ví dụ: Ngày 31/ 12 / 2019có n 31,t 12,H 0 T n H 31 0 31. Số 31 chia cho 7 có số dư là 3 nên ngày đó là thứ Ba. a. Em hãy sử dụng quy tắc trên để xác định các ngày 02 / 09 / 2019 và 20 / 11/ 2019 là ngày thứ mấy? b. Bạn Hằng tổ chức sinh nhật của mình trong tháng 10 / 2019 . Hỏi ngày sinh nhật của Hằng là ngày mấy? Biết rằng ngày sinh nhật của Hằng là một bội số của 3 và là thứ Hai. Câu 4.(3,0 điểm) Tại bề mặt đại dương, áp suất nước bằng áp suất khí quyển và là 1 atm (atmosphere). Bên dưới mặt nước, áp suất nước tăng thêm 1 atm cho mỗi 10 mét sâu xuống. Biết rằng mối liên hệ giữa áp suất y(atm) và độ sâu x(m) dưới mặt nước là một hàm số bậc nhất y ax b . a. Xác định các hệ số a và b. b. Một người thợ lặn đang ở độ sâu bao nhiêu nếu người ấy chịu một áp suất là 2,85atm? Câu 5. (1,0 điểm) Một nhóm gồm 31 học sinh tổ chức một chuyến du lịch (chi phí chuyến đi được chia đều cho các bạn tham gia). Sau khi đã hợp đồng xong, vào giờ chót có 3 bạn bận việc đột xuất không đi được nên họ không đóng tiền. Cả nhóm thống nhất mỗi bạn còn lại sẽ đóng thêm 18000 đồng so với dự kiến ban đầu để bù lại cho 3 bạn không tham gia. Hỏi tổng chi phí mỗi chuyến đi là bao nhiêu? Câu 6. (1,0 điểm) 13
  8. b.Phương trình hoành độ gia điểm của (P) và (d): 1 1 x 2 y 2 x 2 x 4 x 2 x 4 0 x 4 y 8 2 2 Vậy P cắt d tại hai điểm có tọa độ lần lượt là 2; 2 và 4; 8 . Câu 2. (1,0 điểm) 2 Cho phương trình: 2x 3x 1 0 có hai nghiệm x1, x2 . Không giải phương trình, hãy tính giá trị x 1 x 1 của biểu thức: A 1 2 . x2 1 x1 1 Lời giải: 3 S x x 1 2 Theo hệ thức Vi – ét, ta có 2 . 1 P x x 1 2 2 Theo giải thiết, ta có: 2 3 1 2 2 2. 2 x 1 x 1 x 1 x 1 S2 2P 2 2 2 5 A 1 2 1 2 x 1 x 1 x 1 x 1 S P 1 3 1 8 2 1 1 2 1 2 2 Câu 3. (0,75điểm) Quy tắc sau đây cho ta biết được ngày thứ n , tháng t , năm 2019 là ngày thứ mấy trong tuần. Đầu tiên, ta tính giá trị của biểu thức T n H , ở đây H được xác định bởi bảng sau: Tháng t 8 2; 3; 11 6 9; 12 4; 7 1; 10 5 H 3 2 1 0 1 2 3 Sau đó, lấy T chia cho 7 ta được số dưr (0 r 6) . Nếu r 0 thì ngày đó là ngày thứ Bảy. Nếu r 1 thì ngày đó là ngày Chủ Nhật. Nếu r 2 thì ngày đó là ngày thứ Hai. Nếu r 3 thì ngày đó là ngày thứ Ba. 15