Đề thi thử tuyển sinh vào Lớp 10 THPT lần thứ nhất môn Toán - Năm học 2021-2022 - Trường THCS Kim Liên (Có đáp án)

Câu 3. ( 1,5 điểm)

Hai tổ công nhân cùng làm một công việc. Nếu mỗi tổ làm riêng thì tổ A cần 20 giờ, tổ B cần 15 giờ. Người ta giao cho tổ A làm trong một thời gian rồi nghỉ, và tổ B làm tiếp cho xong. Biết thời gian tổ A làm ít hơn tổ B làm là 3 giờ 20 phút. Tính thời gian mỗi tổ đã làm?

pdf 4 trang Mạnh Hoàng 12/01/2024 2680
Bạn đang xem tài liệu "Đề thi thử tuyển sinh vào Lớp 10 THPT lần thứ nhất môn Toán - Năm học 2021-2022 - Trường THCS Kim Liên (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • pdfde_thi_thu_tuyen_sinh_vao_lop_10_thpt_lan_thu_nhat_mon_toan.pdf

Nội dung text: Đề thi thử tuyển sinh vào Lớp 10 THPT lần thứ nhất môn Toán - Năm học 2021-2022 - Trường THCS Kim Liên (Có đáp án)

  1. TRƯỜNG THCS KIM LIÊN KỲ THI THỬ TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2021 – 2022 ĐỀ CHÍNH THỨC LẦN THỨ NHẤT Môn thi: Toán Thời gian làm bài: 120 phút, không kể thời gian giao đề Câu 1. (2,5 điểm) a) Rút gọn: A = 2 44 3 77 : 11 63 1 1 x 9 b) Chứng minh đẳng thức . 1, với x 0 và x  9. x 3 x 3 6 c) Lập phương trình đường thẳng (d) biết: (d) đi qua điểm A( 1; 5) và song song với đường thẳng y = 2x – 4 Câu 2. ( 2,0 điểm) Cho phương trình ẩn x tham số m: x2 – 2(m – 1) x + m2 - 3 = 0 (1) a) Giải phương trình ( 1) khi m = 2 2 2 b) Gọi x1; x2 là hai nghiệm của phương trình ( 1). Tìm m để x1 + x2 < 10 Câu 3. ( 1,5 điểm) Hai tổ công nhân cùng làm một công việc. Nếu mỗi tổ làm riêng thì tổ A cần 20 giờ, tổ B cần 15 giờ. Người ta giao cho tổ A làm trong một thời gian rồi nghỉ, và tổ B làm tiếp cho xong. Biết thời gian tổ A làm ít hơn tổ B làm là 3 giờ 20 phút. Tính thời gian mỗi tổ đã làm? Câu 4. (3,0 điểm) Cho đường tròn O có dây BC cố định không đi qua tâm O. Điểm A di động trên đường tròn O sao cho tam giác ABC có 3 góc nhọn. Các đường cao BE và CF của tam giác ABC (E thuộc AC, F thuộc AB) cắt nhau tại H. Gọi K là giao điểm của hai đường thẳng EF và BC, đoạn thẳng KA cắt O tại điểm M. Chứng minh rằng: a) Bốn điểm B, C, E, F cùng thuộc một đường tròn. b) KMF KEA . c) Đường thẳng KH vuông góc với AI (I là trung điểm của BC). x y x y 2 Câu 5. (1,0 điểm) Giải hệ phương trình x2 y2 1 x 2 y 2 3 Hết Họ và tên thí sinh: Số báo danh:
  2. Gọi thời gian tổ A làn là x (h) ĐK: x > 0 0,25 10 Thì thời gian tổ B làm là x + (h) 0,25 3 x 10 1 3x 10 Phần việc tổ A làm là , tổ B làm là (x + ). = 0,25 20 3 15 45 Do cả hai tổ cùng làm xong công việc nên ta có pt 0,25 x + 3x 10 = 1 20 45 20 Giải pt tìm được x = (t/m đk) 0,25 3 20 Vậy thời gian tổ A làm là giờ = 6 giờ 40 phút 3 0,25 Thời gian tổ B làm là 6 giờ 40 phút + 3 giờ 20 phút = 10 giờ 0,5 Chú ý: Học sinh vẽ hình đến hết câu a cho 0,25 điểm; vẽ hình đến hết câu b cho 0,5 điểm. Câu 4. 0 Xét tứ giác BCEF có: BEC 90 (GT) 0,25 3,0 điểm 0 BFC 90 (GT) 0,25 a. 0 BEC BFC 90 0,25 1,0 BCEF nội tiếp được một đường tròn (do hai đỉnh E và F nhìn cạnh BC dưới cùng một góc 900 ) suy ra bốn điểm B, C, E, F 0,25 cùng thuộc một đường tròn. Xét KBF và KEC có K chung; 0,25 KBF KEC (do tứ giác BCEF nội tiếp) KBF KEC (g. g) b. KB KF Suy ra hay KB.KC KE.KF (1) 0,25 1,0 KE KC Tương tự KMB KCA KB.KC KM.KA (2) 0,25 Từ (1) và (2) suy ra KM.KA KE.KF . 0,25