Đề thi tuyển sinh vào Lớp 10 THPT chuyên Lam Sơn môn Toán (Chuyên) - Năm học 2023-2024 - Sở Giáo dục và Đào tạo Thanh Hóa (Có đáp án)
Câu 5. (1.0 điểm) Xét một bảng ô vuông cỡ 8 8 gồm 64 ô vuông. Chứng minh với mọi cách đánh dấu 7 ô vuông của bảng, ta luôn tìm được một hình chữ nhật gồm 8 ô vuông mà không có ô nào bị đánh dấu
Bạn đang xem tài liệu "Đề thi tuyển sinh vào Lớp 10 THPT chuyên Lam Sơn môn Toán (Chuyên) - Năm học 2023-2024 - Sở Giáo dục và Đào tạo Thanh Hóa (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- de_thi_tuyen_sinh_vao_lop_10_thpt_chuyen_lam_son_mon_toan_ch.pdf
Nội dung text: Đề thi tuyển sinh vào Lớp 10 THPT chuyên Lam Sơn môn Toán (Chuyên) - Năm học 2023-2024 - Sở Giáo dục và Đào tạo Thanh Hóa (Có đáp án)
- SỞ GD & ĐT THANH HÓA KỲ THI KHẢO SÁT CÁC MÔN THI VÀO LỚP 10 TRƯỜNG THPT CHUYÊN LAM SƠN THPT CHUYÊN LAM SƠN NĂM HỌC 2023 - 2024 ĐỀ THI CHÍNH THỨC Môn thi: Toán (chuyên) Thời gian: 150 phút (không kể thời gian giao đề) Ngày thi: 16/04/2023 Đề thi có: 01 trang gồm 05 câu Câu 1. (2.0 điểm) a) Cho các số thực dương x, y thỏa mãn x2 3 xy 10 và y2 xy 6 . Tính A x 3 y . b) Cho x,, y z là các số thực dương thỏa mãn xyz x y z 1. 21 2 1 2 1 Chứng minh x 2 y 2 z 2 x y y z z x . y z x Câu 2. (2.0 điểm) 7 a) Giải phương trình 2 3x 1 5 2 x 7 . x 3 3 2 x y 3 y 3 x 6 y 4 0 b) Giải hệ phương trình . 2 x 3 x 2 y 3 x y 5 0 Câu 3. (2.0 điểm) a) Giải phương trình nghiệm nguyên x5 2024 x 5y 1. b) Cho các số nguyên dương x, y thỏa mãn 44x2 1 y 2 . Chứng minh 2y 2 là số chính phương. Câu 4. (3.0 điểm) Cho tam giác ABC nhọn có AB AC nội tiếp đường tròn O . Phân giác trong của BAC cắt BC tại D và cắt O tại Q QA . Từ D dựng DE, DF lần lượt vuông góc với AC, AB E AC, F AB . Gọi M là trung điểm của BC , tia QM cắt O tại giao điểm thứ hai là P . a) Chứng minh QM QP QD QA . b) Gọi N là giao điểm của PD và EF . Chứng minh MN song song với AD . c) Dựng đường kính AK của O . Các đường tròn ngoại tiếp các tam giác BFN và CEN cắt nhau tại điểm RRN . Chứng minh các điểm PDR,, thẳng hàng. Câu 5. (1.0 điểm) Xét một bảng ô vuông cỡ 8 8 gồm 64 ô vuông. Chứng minh với mọi cách đánh dấu 7 ô vuông của bảng, ta luôn tìm được một hình chữ nhật gồm 8 ô vuông mà không có ô nào bị đánh dấu. . Hết . Họ và tên thí sinh: Số báo danh: Chữ ký giám thị 1: Chữ ký giám thị 2:
- 2 Câu 2. 1,0 (2 điểm) 7 a) Giải phương trình 2 3x 1 5 2 x 7 . x Hướng dẫn: 7 Điều kiện: x ; x 0 . (*) 2 0,25 Phương trình đã cho 6x2 2 x 7 5 x 2 x 7 (1) Đặt u 2 x 7 . Từ (1) cho ta: 6x2 5 ux u 2 0 2x u 3 x u 0 0,25 u 2 x . u 3 x Trường hợp 1: u 2 x 2 x 7 2 x 0,25 x 0 1 29 2 x (thỏa mãn (*)) 4x 2 x 7 0 4 Trường hợp 2: u 3 x 2 x 7 3 x x 0 2 x 1 (thỏa mãn (*)) 0,25 9x 2 x 7 0 1 29 Vậy tập nghiệm của phương trình: S ;1 4 3 3 2 x y 3 y 3 x 6 y 4 0 (1) 1,0 b) Giải hệ phương trình . 2 x 3 x 2 y 3 x y 5 0 (2) Biến đổi phương trình (1), ta có : x3 3 x y 3 3 y 2 6 y 4 x 3 3 x y 1 3 3 y 1 . (3) Đặt u y 1, thay vào (3) ta có được : x3 3 x u 3 3 u x u x2 ux u 2 3 0 (4) 0,5 2 3 2 2 u 3 u Nhận thấy : x ux u 3 x 3 0 với x, u . 2 4 Do đó từ (4) cho ta : x u y 1 y 1 x . Thay vào phương trình (1), ta có: x2 5 x 2 2 x 1 0 (điều kiện: x 1) 0,25
- b) Cho các số nguyên dương x, y thỏa mãn 44x2 1 y 2 . Chứng minh 2y 2 là số chính phương. 1,0 Hướng dẫn: 0,25 Dễ thấy y lẻ nên ta đặt y 2 k 1 k . Thay vào giả thiết, ta có được: 44x2 1 2 k 1 2 11 x 2 k k 1 . (*) k k 1 11 Do 11 là số nguyên tố nên hoặc k11 hoặc k 1 11. Trường hợp 1: k11. Đặt k 11. m m . Thay vào (*), ta có: x2 m 11 m 1 . 0,25 Lại có: m;11 m 1 1 m và 11m 1 đều là các số chính phương. m a2 Vậy trong đó a, b ; b 0 . 2 11m 1 b Lúc này: 2y 2 4 k 4 44 m 4 4 b2 là số chính phương. Trường hợp 2 : k 1 11. Đặt k 1 11. n n * . 0,5 Thay vào (*), ta có: x2 n 11 n 1 . Lại có: n;11 n 1 1 n và 11n 1 đều là các số chính phương. n c2 Vậy trong đó c, d * . 2 11n 1 d Từ đó cho ta 11c2 d 2 1 hay 12c2 c 2 d 2 1 ( ) Nhận thấy vế trái của ( ) chia hết cho 4, vế phải chia 4 chỉ có thể có các số dư là 1;2 hoặc 3 nên không thể xảy ra. Vậy nếu các số nguyên dương x, y thỏa mãn 44x2 1 y 2 thì 2y 2 là số chính phương. Câu 4: Cho tam giác ABC nhọn có AB AC nội tiếp đường tròn O . Phân giác 3,0 4 trong của BAC cắt BC tại D và cắt O tại Q QA . Từ D dựng DE, DF lần (3 điểm) lượt vuông góc với AC, AB E AC, F AB . Gọi M là trung điểm của BC , tia QM cắt O tại giao điểm thứ hai là P . a) Chứng minh QM QP QD QA . b) Gọi N là giao điểm của PD và EF . Chứng minh MN song song với AD . c) Dựng đường kính AK của O . Các đường tròn ngoại tiếp các tam giác BFN và CEN cắt nhau tại điểm RRN . Chứng minh các điểm PDR,, thẳng hàng.
- Gọi R là giao điểm thứ hai của các đường tròn ngoại tiếp các tam giác BFN và CEN . Trước hết, ta chứng minh RO . 0 Ta có: BRC BRN CRN AEF AFE 180 BAC . 1,0 Vậy tứ giác ABRC nội tiếp nên RO . Lúc này: NRC NEA EAP PRC . Do đó PDR,, thẳng hàng. Câu 5: Xét một bảng ô vuông cỡ 8 8 gồm 64 ô vuông. Chứng minh với mọi 1,0 5 cách đánh dấu 7 ô vuông của bảng, ta luôn tìm được một hình chữ nhật gồm 8 (1 điểm) ô vuông mà không có ô nào bị đánh dấu. Hướng dẫn: 1,0 Ta chia bảng vuông đã cho thành 8 bảng hình chữ nhật cỡ 2 4 như hình vẽ. Theo đề bài ta chỉ đánh dấu đúng 7 ô vuông của bảng nên theo nguyên lí Đirichle, luôn tồn tại ít nhất một bảng con trong số 8 bảng trên không chứa ô nào bị đánh dấu, do đó ta có được điều phải chứng minh. Hết .