Đề thi tuyển sinh vào Lớp 10 THPT môn Toán (Chuyên) - Năm học 2023-2024 - Sở Giáo dục và Đào tạo Phú Yên (Có đáp án)
Câu 5. (3,00 điểm) Cho tam giác ABC vuông tại A. Gọi D là trung điểm của AB, H là hình chiếu vuông góc của A lên đường thẳng DC. Đường thẳng qua C vuông góc với BC cắt đường thẳng AB tại E. Gọi I là hình chiếu vuông góc của E lên đường thẳng DC.
a) Chứng minh BH vuông góc với AI.
b) Đường thẳng qua B vuông góc với BH cắt đường thẳng DC tại K. Chứng minh tứ giác BCEK nội tiếp.
Bạn đang xem tài liệu "Đề thi tuyển sinh vào Lớp 10 THPT môn Toán (Chuyên) - Năm học 2023-2024 - Sở Giáo dục và Đào tạo Phú Yên (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- de_thi_tuyen_sinh_vao_lop_10_thpt_mon_toan_chuyen_nam_hoc_20.pdf
Nội dung text: Đề thi tuyển sinh vào Lớp 10 THPT môn Toán (Chuyên) - Năm học 2023-2024 - Sở Giáo dục và Đào tạo Phú Yên (Có đáp án)
- SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT TỈNH PHÚ YÊN NĂM HỌC 2023-2024 Môn thi: TOÁN (chuyên) ĐỀ CHÍNH THỨC Thời gian làm bài: 150 phút (không kể thời gian giao đề) Câu 1. (4,00 điểm) xxx 211 a) Cho biểu thức A : xxxxxx 1111 625625 Rút gọn biểu thức A; tính giá trị của A, biết x 26252625 11 b) Cho biết 21,1. ab Chứng minh rằng ababab 112222 . ab Câu 2. (6,00 điểm) Giải các phương trình, hệ phương trình sau: 333 a) xxx 353520 . 3 xyxyy 32632 b) 32 32.xyy Câu 3. (3,00 điểm) Cho đoạn thẳng AB, với M là trung điểm. Trên đường trung trực Mt của đoạn thẳng AB lấy điểm I bất kì. Vẽ tia Ax sao cho AI là phân giác góc BAx. Đường thẳng BI cắt Ax tại N. Gọi C là điểm đối xứng của A qua N, H là hình chiếu vuông góc của C lên AB. a) Chứng minh rằng tam giác NHB cân. b) Chứng minh đẳng thức: BHHIBN2 c) Khi điểm I di chuyển trên đường trung trực Mt đến vị trí làm cho tam giác ABC AB vuông tại C, hãy tính tỉ số AC Câu 4. (1,00 điểm) Cho phương trình axbxc2 0 ( 0a ) , với abc,, là số thực thỏa 2a b c 0. Chứng minh rằng phương trình luôn có 2 nghiệm phân biệt và 2 nghiệm không thể đều dương. Câu 5. (3,00 điểm) Cho tam giác ABC vuông tại A. Gọi D là trung điểm của AB, H là hình chiếu vuông góc của A lên đường thẳng DC. Đường thẳng qua C vuông góc với BC cắt đường thẳng AB tại E. Gọi I là hình chiếu vuông góc của E lên đường thẳng DC. a) Chứng minh BH vuông góc với AI. b) Đường thẳng qua B vuông góc với BH cắt đường thẳng DC tại K. Chứng minh tứ giác BCEK nội tiếp. Câu 6. (3,00 điểm) Cho x, y là hai số thực thỏa mãn: xy 1,0 1. Chứng minh rằng: 11 xy x 11 y x22 y y x Hết Thí sinh không được sử dụng tài liệu. Giám thị không giải thích gì thêm. Họ và tên thí sinh: ;Số báo danh: Chữ kí giám thị 1: ;Chữ kí giám thị 2:
- uv 0 33 3 PTĐC viết lại là: u v u v 0 3 u v uv 0 u 0 1,00 đ v 0 35 (1):uvxxx 0350 2 (2): ux 0 3; (3): vx 05 . 1,00 đ 35 Vậy tập nghiệm của phương trình là: S ;3;5 . 2 Cách 2: Đặt axbxcx 3,5,352 . Khi đó: abcabc333 3 (chứng minh). Từ đó ta có nghiệm như cách 1. 3 32 xyxyy 326(1) b) 3,00 đ 32 32(2)xyy u x y y2 2 Đặt 2 . Dễ thấy y 0 . Từ (2) suy ra 30xy 2 , do đó ta luôn có vy y 0,50 đ uv 0,0 (3). uuvv3 326(4) Ta có hệ phương trình mới: 32(5).uvv 0,50 đ u3 4 Thế (5) và (4) ta được: v (6). 5 Thế (6) vào (5) ta được: 4332 3121401uuuuuuu 322140 (7). 1,00 đ Đối chiếu với điều kiện (3) thì 322140uuu32 nên (7) có nghiệm u 1. Với , từ (6) suy ra v 1 hay yyx2 111 . 1,00 đ Vậy hệ phương trình có 2 nghiệm: xy;1;1 và xy;1;1 . 3 3,00 đ a) Chứng minh NHB cân 1,00 đ t AHC vuông tại H có HN là trung tuyến nên NA = NC = NH nên HNA x 0,50 đ cân tại N, suy ra NHA NAH , do đó C NHAIABIBHNBH 222 (1). N Theo tính chất góc ngoài của tam giác I thì NHA HNB HBN (2). 0,50 đ Từ (1) và (2) suy ra HNB HBN A B M H hay NHB cân tại H. 2
- 5 3,00 đ a) Chứng minh B H A I 1,50 đ Gọi M là giao điểm của EI và AC, ta có M là trực tâm của tam giác ECD 0,50 đ D M C E DM // BC. Tam giác ABC có DA = DB, DM // BC MA MC . Tam giác AHC có MA = MC, MI // AH I H I C . 0,50 đ Gọi N là trung điểm của AH ta có IN // AC I N A D . Tam giác ADI có AHDIINAD, do đó N là trực tâm D N A I 0,50 đ mà DN // BH B H A I . b) Chứng minh tứ giác BCEK nội tiếp 1,50 đ Từ B H A I AI // KB I A D K B D . Xét KBD và IAD có: 0,50 đ IADKBDDADBADIBDK ,, KBD IAD DK DI (1). DADC Vì DACDIE g gDA( . DEDI ) DC (2). 0,50 đ DIDE Từ (1) và (2) kết hợp với DA = DB suy ra DB.DE = DK.DC DK DB 0,50 đ DEK DCB DEK DCB dẫn đến BCEK nội tiếp . DE DC Cho x, y là hai số thực thỏa mãn: xy 1,01 . Chứng minh rằng: 6 11 xy 3,00 đ xyxyyx 1122 1 x 1 y Với giả thiết đã cho, ta sẽ chứng minh 2 (1) và 2 (2). 0,50 đ y 1 x y xyx 1 Ta có: ( 1 ) xyxxyy xxx2 0(1)(1)0 0,50 đ (1)()0xyx (3). (3) đúng vì xy 1,01 . 0,50 đ Dấu đẳng thức xảy ra khi xy 1,01 . Ta cũng có: (2)0() xy () y 0 y2 xy x yx y 0,50 đ ()(1)0xyy (4). (4) đúng vì xy 1,0 1. 0,50 đ Dấu đẳng thức xảy ra khi xy 1. Cộng theo vế (1) và (2) ta được 0,50 đ Dấu đẳng thức xảy ra khi xy 1. 4