Đề thi tuyển sinh vào Lớp 10 THPT môn Toán - Năm học 2023-2024 - Sở Giáo dục và Đào tạo Hải Dương (Có đáp án)
Câu 3 (2,0 điểm)
1. Một đội công nhân phải trồng 96 cây xanh. Đội dự định chia đều số cây cho mỗi công nhân nhưng khi chuẩn bị trồng thì có 4 công nhân được điều đi làm việc khác nên mỗi công nhân còn lại phải trồng thêm 4 cây. Hỏi lúc đầu đội công nhân có bao nhiêu người ?
Bạn đang xem tài liệu "Đề thi tuyển sinh vào Lớp 10 THPT môn Toán - Năm học 2023-2024 - Sở Giáo dục và Đào tạo Hải Dương (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- de_thi_tuyen_sinh_vao_lop_10_thpt_mon_toan_nam_hoc_2023_2024.pdf
Nội dung text: Đề thi tuyển sinh vào Lớp 10 THPT môn Toán - Năm học 2023-2024 - Sở Giáo dục và Đào tạo Hải Dương (Có đáp án)
- SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 TRUNG HỌC PHỔ THÔNG HẢI DƯƠNG NĂM HỌC 2023 – 2024 Môn thi: TOÁN Ngày thi: 02/06/2023 ĐỀ CHÍNH THỨC Thời gian làm bài: 120 phút, không tính thời gian phát đề Đề thi có 01 trang Câu 1 (2,0 điểm) 2xx 15 1. Giải phương trình: 53 35xy 2. Giải hệ phương trình: 2xy 5 12 Câu 2 (2,0 điểm) 11x 1 1. Rút gọn biểu thức: Ax .: với xx 0, 1. xx x 1 x 21 x 2. Cho đường thẳng d : y ax b. Tìm a và b để đường thẳng d song song với đường thẳng dy': 5 x 3 và đi qua điểm A 1; 3 . Câu 3 (2,0 điểm) 1. Một đội công nhân phải trồng 96 cây xanh. Đội dự định chia đều số cây cho mỗi công nhân nhưng khi chuẩn bị trồng thì có 4 công nhân được điều đi làm việc khác nên mỗi công nhân còn lại phải trồng thêm 4cây. Hỏi lúc đầu đội công nhân có bao nhiêu người ? 2. Cho parabol Py : x2 và đường thẳng dy :3 xm. Tìm m để đường thẳng d cắt parabol P tại hai điểm phân biệt có hoành độ xx12, thoả mãn x12 23 xm . Câu 4 (3,0 điểm) Cho tam giác ABC có ba góc nhọn và các đường cao AF,, BD CE cắt nhau tại H . 1. Chứng minh rằng: DAH DEH . 2. Gọi O và M lần lượt là trung điểm của BC và AH . Chứng minh rằng: tứ giác MDOE nội tiếp. 3. Gọi K là giao điểm của AH và DE . Chứng minh rằng: AH2 2 MK AF HF . Câu 5 (1,0 điểm) Cho abc,, là các số thực dương. Chứng minh rằng: a222 b c2 abc 12 ab bc ca HẾT Họ và tên thí sinh: Số báo danh: Cán bộ coi thi số 1 Cán bộ coi thi số 2 .
- Một đội công nhân phải trồng 96 cây xanh. Đội dự định chia đều số cây cho mỗi công nhân nhưng khi chuẩn bị trồng thì có 4 công nhân được điều đi làm việc khác nên mỗi công nhân còn lại phải trồng thêm 4cây. Hỏi lúc đầu đội công nhân có bao nhiêu người ? Gọi xx *,4 x là số công nhân lúc đầu. 96 0,25 Số cây mỗi công nhân dự định phải trồng là . x Số cây mỗi công nhân còn lại phải trồng sau khi 4 người đi làm việc 96 0,25 khác là . x 4 Theo bài ta có phương trình: 1 96 96 4 xx 4 24 24 1 xx 4 0,25 24x 24 x 4 xx 4 96 xx2 4 xx2 4 96 0 x 12 0,25 3 x 8 (2 điểm) Kết hợp điều kiện ta có x 12. Cho parabol Py : x2 và đường thẳng dy :3 xm. Tìm m để đường thẳng d cắt parabol P tại hai điểm phân biệt có hoành độ xx12, thoả mãn x12 23 xm . Phương trình hoành độ giao điểm là x22 3 xm x 3 xm 0* Để d cắt P tại hai điểm phân biệt phương trình * có hai 0,25 nghiệm phân biệt. 9 Ta có 94 mm 0 4 2 xx1231 Theo Viét ta có xx12 m 2 0,25 Theo đề bài ta có x12 2 xm 33 xm 3 Từ 1 và 3 ta có 1 0,25 xm2 Thay vào phương trình (2) ta được 2 m 0 3 mm m m 40 m 0,25 m 4 Đối chiếu điều kiện ta có m 0 và m 4 . 4 Cho tam giác ABC có ba góc nhọn và các đường cao AF,, BD CE cắt nhau tại H . 1 (3 điểm) 1. Chứng minh rằng: DAH DEH .
- (1 điểm) a222 b c2 abc 12 ab bc ca Trong 3 số abc 1, 1, 1 luôn tồn tại ít nhất hai số cùng dấu. 0,25 Giả sử a 1 và b 1 cùng dấu. Suy ra a 1 b 10 ab 1 a b 0,25 2abc 22 c ac 2 bc 2 ab 2 abc 22 c ab bc ca 1 Ta sẽ chứng minh a222 b c2 abc 1 2 ab 2 abc 22 c 222 22 Thật vậy 2 abc 12 abc 2 ab c 1 0 0,25 (Luôn đúng) Từ (1) và (2) ta được điều phải chứng minh. a 1 ab 1 10 Dấu “=” xảy ra khi b 1 0,25 22 ab c10 c 1 Lưu ý: Học sinh giải theo cách khác nếu đúng vẫn cho điểm tối đa.